Math, asked by Programme, 1 year ago

If x =

(3 \:  +  \:  \sqrt{8} )

Show that

( \:  {x}^{2}  +  \:   \frac{1}{ {x}^{2} }  \: ) \:  \:  = 34

Answers

Answered by RanjanKumar14
2
★Ello ★

here is your answer !!


x = 3 + ✓8


there fore ,

1 /x = 1 / 3 + √ 8 × 3 -✓8 / 3 - ✓ 8

{ rationalize. }


1 / x = 3 -✓8 / 9 -8

=> 1 / x = 3 -✓ 8 / 1


now ,.



x + 1 / x => 3 + √ 8 + 3 - ✓ 8

=> x + 1 / x = 6



=> (x + 1 / x )² = x² + 1 / x² + 2 × x × 1 / x


=> ( 6 )² = x² + 1 / x² + 2


x² + 1 / x² = 36 -2


=> x² + 1/ x² = 34 .



hence proved !!!



hope it helps you dear !!

thanks !!

thanks
Answered by fab13
0

Answer:

given,

x = 3 +  \sqrt{8}  \\  =  >  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  =  >  \frac{1}{x}  =  \frac{(3 -  \sqrt{8} )}{(3 +  \sqrt{8} )(3 -  \sqrt{8} )}  \\  =  >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{ {3}^{2}  - ( \sqrt{8} ) {}^{2} }  \\  =  >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\  =  >  \frac{1}{x}  =  \frac{3  -  \sqrt{8} }{1}  \\  =  >  \frac{1}{x}  = 3  -  \sqrt{8}

now,

x +  \frac{1}{x}   \\ = (3 +  \sqrt{8} ) + (3 -  \sqrt{8} ) \\  =  3 +  \sqrt{8}  + 3 -  \sqrt{8}  \\  = 6

finally,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  = (x +  \frac{1}{x} ) {}^{2}  - 2 \times x \times  \frac{1}{x}  \\  = (6) {}^{2}  - 2 \\  = 36 - 2 \\  = 34

hence proved

Similar questions