Math, asked by ANTMAN22, 2 days ago

If x+
 \frac{1}{x}
=5,Find the value of
 {x}^{2}
+
 \frac{1}{ {x}^{2} }

Do it with full explanation

Answers

Answered by Shredhky
1

Answer:

Use the identity

(x  + \frac{1}{x})^{2}  =  {x}^{2}  +  { \frac{1}{x} }^{2}  + 2 \\  {5}^{2}  =  {x {}^{2}  +  { \frac{1}{x} }^{} }^{2}  + 2 \\ 25 - 2 =  {x}^{2}  +  \frac{1}{x}^{2}  \\  {x {}^{2}  +  { \frac{1}{x} }^{} }^{2}  = 23

Please mark me as brainliest.

Answered by Anonymous
11

Step-by-step explanation:

Given :-

 \displaystyle \sf \dashrightarrow \: x +  \frac{1}{x}  = 5

To Find :-

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

Solution :-

Squaring both sides,

 \displaystyle \sf \dashrightarrow \:  {(x)}^{2}  +  \bigg( \frac{1}{x}  \bigg) {}^{2}  =  {(5)}^{2}

Using, (a + b)² = a² + 2ab + b²

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{2} }  = 25

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  + 2 \times   \cancel{{x}^{2} } \times  \frac{1}{  \cancel{{x}^{2} }} +  \frac{1}{ {x}^{2} }   = 25

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 25

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2

 \displaystyle \sf \dashrightarrow \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23

Hence,

 \displaystyle\dashrightarrow \:   \underline{\boxed{  \bf{x}^{2}  +  \frac{1}{ {x}^{2} }  = 23}}

Similar questions