Math, asked by sshashwat0singh, 4 months ago

If x-\frac{1}{x} =6 Then the value of x^{2} + \frac{1}{x^{2} } is

Answers

Answered by Anonymous
91

Question :-

If \sf x - \dfrac{1}{x} = 6, then the value of \sf x^2 + \dfrac{1}{x^2} is

Answer :-

We are given,

\sf x - \dfrac{1}{x} = 6

Squaring on both the side :-

\sf \Bigg(x - \dfrac{1}{x}\Bigg)^2 = (6)^2

  • Identity used - \sf (a - b)^2 = a^2+b^2-2ab

\sf (x)^2 + \Bigg(\dfrac{1}{x}\Bigg)^2 - 2 \times \cancel x \times \dfrac{1}{\cancel x} = 6

\sf x^2 + \dfrac{1}{x^2} - 2 = 6

\sf x^2 + \dfrac{1}{x^2} = 6 + 2

\boxed{\sf x^2 + \dfrac{1}{x^2} = 8 }

Answered by Anonymous
25

Answer:

➩ \sf x - \dfrac{1}{x} = 6x−

➩ \sf \Bigg(x -\dfrac{1{x\Bigg)^2=(6)^2(x[tex]</p><p></p><p></p><p></p><p></p><p>⠀</p><p></p><p>⠀</p><p></p><p>[tex] \sf \: Identity \:  used - \sf (a - b)^2 = a^2+b^2-2ab(a−b)

➩ \sf (x)^2 + \Bigg(\dfrac{1}{x}\Bigg)^2 - 2 \times \cancel x \times \dfrac{1}{\cancel x} </p><p>

➩ \sf x^2 + \dfrac{1}{x^2}

➩ \sf x^2 + \dfrac{1}{x^2}

➩ \boxed{\sf x^2 + \dfrac{1}{x^2} = 8 }

Similar questions