Math, asked by kavyasahaidln, 6 days ago

If x - \frac{1}{x} = 8, find the value of x^{2} + \frac{1}{x^2}

Answers

Answered by DeeznutzUwU
1

        \text{It is given that }x+\dfrac{1}{x} = 8

        \text{We must find }x^2 + \dfrac{1}{x^2}

\implies\: \text{Squaring on both sides}

\implies \: \text{\huge{(}}x + \dfrac{1}{x}\text{\huge{)}}^2 = (8)^2

        \text{We know that }(a+b)^2 = a^2 + b^2 + 2ab

\implies \: x^2 + \dfrac{1}{x^2} + 2(x)\text{\huge{(}}\dfrac{1}{x}\text{\huge{)}} = 64

\implies \: x^2 + \dfrac{1}{x^2} +2 = 64

\implies \: \boxed{x^2 + \dfrac{1}{x^2} = 62}

Similar questions