Math, asked by StarTbia, 1 year ago

If x \frac{2}{3} and x= - 3 are roots of the quadratic equation ax² + 7x+ b= 0, find the values of a and b.

Answers

Answered by SillySam
8

a {x}^{2}  + 7x + b = 0


x=\frac{2}{3}

a \times  ( \frac{2}{3} ) {}^{2}  + 7 \times  \frac{2}{3}  \times + b = 0


a \times  \frac{4}{9}  +  \frac{14}{3}  + b = 0


 \frac{4a}{9}  +  \frac{14}{3}  + b = 0
---------(1)

x=-3 .

a×(-3)^2 + 7×(-3)+b=0

9a -21 +b =0 -------(2)

Equalising equation 1 and 2 .

 \frac{4a}{9}  +  \frac{14}{3}  + b = 9a  - 21 + b


 \frac{4a}{9}  - 9a + b - b \:  =  - 21 -  \frac{14}{3}


 \frac{4a - 81a}{9}  =  \frac{ - 63 - 14}{3}


 \frac{ - 77a}{9}  =   \frac{ - 77}{3}



 \frac{a}{9}  =  \frac{1}{3}



3a =9

a=9/3

a= 3

Using this value of a in equation 2 .

9a-21+b =0

9×3-21 + b=0

27-21+b=0

6+b=0

b=0-6

b=-6

\bf{Hope\:it\:helps}
Answered by mysticd
3
Solution :

Given quadratic equation :

ax² + 7x + b = 0 ---( 1 )

i ) Put x = 2/3 in equation ( 1 ), we get

a(2/3)² + 7(2/3) + b = 0

=> 4a/9 + 14/3 + b = 0

Multiply each term by 9 , we get

=> 4a + 42 + 9b = 0

=> 4a + 9b = -42 ---( 2 )

ii ) Put x = -3 in equation ( 1 ) , we get

a(-3)² + 7( -3 ) + b = 0

=> 9a - 21 + b = 0

=> b = 21 - 9a ---( 3 )

iii ) Now , substitute b = 21 - 9a in

equation ( 2 ) , we get

4a+ 9( 21 - 9a ) = -42

=> 4a - 189 - 81a = -42

=> -77a = -42 - 189

=> -77a = -231

=> a = ( -231 )/( -77 )

=> a = 3

Put a = 3 in equation ( 3 ), we get

b = 21 - 9×3

=> b = 21 - 27

=> b = -6

Therefore ,

a = 3 , b = -6

•••••






Equestriadash: Hey! Great answer!! ^^"
mysticd: Thank you.
Equestriadash: :)
Similar questions