Math, asked by akshayredy06, 10 months ago

If x =
 \frac{ \sqrt{5 }  - 2 }{  \sqrt{5}  + 2}
And y =
 \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}
Find
x ^{2}  +  {y}^{2}  + xy

Answers

Answered by VJTHUNDER
2

Answer:

Hey friend can you just make the q clear I cannot see properly

Solution :

Given a = ( 2-√5)/(2+√5)

b = (2+√5)/(2-√5)

i )a+b

= [(2-√5)/(2+√5)]+[(2+√5)/2-√5)]

=[(2-√5)²+(2+√5)²]/[(2+√5)(2-√5)]

={ 2[2² + (√5)²]}/[2² - (√5 )²]

= [ 2(4 + 5 ) ]/(4-5)

[ ( x - y)² + ( x + y )² = 2 ( x² + y² ) ]

= -18 ------( 1 )

ii ) a - b

=[(2-√5)/(2+√5)]-[(2+√5)/(2-√5)]

=[(2-√5)²-(2+√5)²]/[(2+√5)(2-√5)]

= [ -4×2×(√5) ]/[ 2² - ( √5 )² ]

[ (x-y)² - ( x+y )² = -4xy ]

= ( -8√5 )/(4 - 5 )

= 8√5 ---( 2 )

Therefore ,

a² - b²

= ( a + b )( a - b )

= ( -18 )( 8√5 ) [ from (1)&(2) ]

= -144√5

Similar questions