Math, asked by aditya200431, 1 year ago

if x=
 \frac{ \sqrt{5 } + 3 }{2}
find the value of
 {x}^{2} +  \frac{1}{ {x}^{2} }

Answers

Answered by Anonymous
1

ANSWER

x = \frac{ \sqrt{5} + 3 }{2}  \\  \frac{1}{x}  =  \frac{2}{ \sqrt{5}  + 3}   \\  =  >  \frac{1}{x}  =  \frac{2( \sqrt{5} - 3) }{( \sqrt{5}  + 3)( \sqrt{5}  - 3)}  \\  =  >  \frac{1}{x}  =  \frac{2( \sqrt{5} - 3) }{5 - 9}  \\  =  >  \frac{1}{x}  =  \frac{2( \sqrt{5} - 3) }{ - 4}  \\  =  >  \frac{1}{x}  =  -  \frac{ \sqrt{5}  - 3}{2}

therefore....

x +  \frac{1}{x}  =  \frac{ \sqrt{5}  + 3}{2}  + ( -  \frac{ \sqrt{5}  - 3}{2} ) \\  =  > x +  \frac{1}{x}  =  \frac{ \sqrt{5}  + 3 -  \sqrt{5}  + 3}{2}  \\  =  > x +  \frac{1}{x}  = 3 \\  =  > (x +  \frac{1}{x} ) {}^{2}  = 3 {}^{2}  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  + 2(x)( \frac{1}{x} ) = 9 \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  = 9

Similar questions