Math, asked by suhana3265, 7 months ago

if x =  \frac{ \sqrt{ \sqrt{6} + 2 }  +  \sqrt{ \sqrt{6} - 2 } }{ \sqrt{ \sqrt{6}  +  \sqrt{2} } }

Find x^2​

Answers

Answered by ahervandan39
0

if x =  \frac{ \sqrt{ \sqrt{6} + 2 } + \sqrt{ \sqrt{6} - 2 } }{ \sqrt{ \sqrt{6} + \sqrt{2} } }

Attachments:
Answered by Anonymous
50

Step-by-step explanation:

Given:

 \frac{ \sqrt{5 + 2 \sqrt{6} } + \sqrt{5 - 2 \sqrt{6} } } { \sqrt{5 + \sqrt[]{6} } - \sqrt{5 - 2 \sqrt{6} } } = \sqrt{ \frac{x}{2} }

To find:

x {}^{2}

Solution:

By squaring both sides we get,

 {x}^{2}  =  \frac{( \sqrt{ \sqrt{6}  + 2} +  \sqrt{ \sqrt{6}  - 2) {}^{2} }  }{ ( \sqrt{ \sqrt{6}  + 2) {}^{2} } }  \\  \\ \Longrightarrow {x}^{2}  =  \frac{( \sqrt{ \sqrt{6} + 2 } )  {}^{2}  + 2 \sqrt{ \sqrt{6 + 2} \times  \sqrt{ \sqrt{6 - } }2  } }{ \sqrt{6}  +  \sqrt{2} }

 =  \frac{ \sqrt{6}  + 2 +  \sqrt{6}  - 2 + 2 \sqrt{( \sqrt{6}  + 2)( \sqrt{6}  - 2} }{ \sqrt{6}  +  \sqrt{2} }

 =  \frac{2 \sqrt{6}  + 2 \sqrt{( \sqrt{6) {}^{2}  -  {2}^{2} } } }{ \sqrt{6}  +  \sqrt{2} }  \\  \\  =  \frac{2 \sqrt{6} + 2 \sqrt{6 - 4}  }{ \sqrt{6} +  \sqrt{2}  }  \\  \\  =  \frac{2 \sqrt{6} + 2 \sqrt{2}  }{ \sqrt{6}  +  \sqrt{2} }  \\  \\  =  \frac{2 \sqrt{2} ( \sqrt{3 + 1)} }{ \sqrt{2}( \sqrt{3}  + 1) }   \\  \\  = 2

\Longrightarrow x^2 = 2.

Similar questions