If :
x =
y =
Find value of x² + y² - 2xy
Solve as soon as possible
Answers
Step-by-step:
The Value of x:
The Value of y:
This means we should look for the value of .
The values of x, y are given.
→
→
→
→
For more:
Finding the value without actually dividing(non-terminating)
How to find the value of without actually dividing
when we know that ?
The fraction:
Therefore, its decimal value is .
Answer:
yes bro the 1st is correct
Step-by-step explanation:
The Value of x:
\sf{=3+0.\overline{3}-0.\overline{9}}=3+0.3−0.9
\sf{=3+\dfrac{3}{9}-\dfrac{9}{9}}=3+93−99
\sf{=3-\dfrac{6}{9}}=3−96
\sf{=\dfrac{7}{3} }=37
The Value of y:
\sf{=4+0.\overline{1}-0.\overline{5}}=4+0.1−0.5
\sf{=4+\dfrac{1}{9}-\dfrac{5}{9}}=4+91−95
\sf{=4-\dfrac{4}{9}}=4−94
\sf{=\dfrac{32}{9} }=932
\boxed{\sf{x^2-2xy+y^2=(x-y)^2\;[Algebraic\;Identity]}}x2−2xy+y2=(x−y)2[AlgebraicIdentity]
This means we should look for the value of \sf{(x-y)^2}(x−y)2 .
The values of x, y are given.
→ \sf{x-y=\dfrac{7\times 3}{3\times 3}-\dfrac{32}{9} }x−y=3×37×3−932
→ \sf{x-y=\dfrac{21-32}{9} }x−y=921−32
→ \sf{x-y=-\dfrac{11}{9} }x−y=−911
→ \sf{(x-y)^2=(-\dfrac{11}{9} )^2}(x−y)2=(−911)2
\sf{\therefore{(x-y)^2=\dfrac{121}{81} }}∴(x−y)2=81121
For more:
Finding the value without actually dividing(non-terminating)
How to find the value of \sf{\dfrac{121}{81} }81121 without actually dividing
when we know that \sf{999999999=3^4\times 37\times 333667}999999999=34×37×333667 ?
The fraction:
\sf{=\dfrac{121}{81} }=81121
\sf{=1+\dfrac{40}{3^4} }=1+3440
\sf{=1+\dfrac{40\times 37\times 333667}{3^4\times 37\times 333667}}=1+34×37×33366740×37×333667
\sf{=1+\dfrac{493827160}{999999999}}=1+999999999493827160
\sf{=1+493827160\times 0.\overline{000000001}}=1+493827160×0.000000001
\sf{=1.\overline{493827160}}=1.493827160
Therefore, its decimal value is \sf{1.\overline{493827160}}1.493827160