Math, asked by SharmaShivam, 10 months ago

If X = \left[\begin{array}{ccc}0&1\\0&0\end{array}\right] and (pI + qX)ˣ = AI + BX, ∀ p, q ∈ R, where A and B are scalars and I is two rowed unit matrix, then A and B are
(a) pˣ⁻¹, xpˣq
(b) pˣ, xpˣ⁻¹q
(c) pˣ, xpˣ⁻²q
(d) None of these

Answers

Answered by SKBhattacharjee54
2

HEYA MATE HERE UR ANSWER,

The answer is in the given attachment

So the answer is option c.) p^x, xp^x-2q

Hope it helps u...

No need to mark as the brainliest...

Attachments:
Answered by Rohit18Bhadauria
28

Given:

⟼ A matrix

\rm{X=\left[\begin{array}{cc}0&1\\0&0\end{array}\right]}

⟼ (pI + qX)ˣ = AI + BX

To Find:

Value of A and B

Solution:

We know that,

\longrightarrow\bf\pink{I^{n}=I}

\longrightarrow\bf\purple{AI=IA=A}

where,

I is an identity matrix

A is any matrix

Order of I and A is same

\rule{190}{1}

Firstly, we have to find X²

\longrightarrow\rm{X^{2}=X.X}

\longrightarrow\rm{X^{2}=\left[\begin{array}{cc}0&1\\0&0\end{array}\right]\left[\begin{array}{cc}0&1\\0&0\end{array}\right]}

\longrightarrow\rm{X^{2}=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]}

Now, we have to find X³

\longrightarrow\rm{X^{3}=X^{2}.X}

\longrightarrow\rm{X^{3}=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]\left[\begin{array}{cc}0&1\\0&0\end{array}\right]}

\longrightarrow\rm{X^{3}=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]}

Now, we will find X⁴

\longrightarrow\rm{X^{4}=X^{3}.X}

\longrightarrow\rm{X^{4}=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]\left[\begin{array}{cc}0&1\\0&0\end{array}\right]}

\longrightarrow\rm{X^{4}=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]}

Just like this,

X² = X³ = X⁴ = X⁵ = ..........= Xˣ = O

where, x∈N and O is a null matrix

Now,

By using Binomial distribution, we get

\longrightarrow\rm{(pI + qX)^{x}}

\sf{(pI)^{x}+{}^{x}C_{1}(pI)^{x-1}(qX)+{}^{x}C_{2}(pI)^{x-2}(qX)^{2}+....+(qX)^{x}}

\sf{p^{x}I^{x}+xp^{x-1}I^{x-1}(qX)+{}^{x}C_{2}(p^{x-2}I^{x-2})q^{2}X^{2}+....+q^{x}X^{x}}

\sf{p^{x}I+xp^{x-1}I(qX)+{}^{x}C_{2}(p^{x-2}I)q^{2}(O)+....+q^{x}(O)}

\rm{p^{x}I+xp^{x-1}I(qX)+0+....+0}

\rm{p^{x}I+xp^{x-1}IqX}

\rm{p^{x}I+xp^{x-1}q(IX)}

\rm{p^{x}I+xp^{x-1}qX}

\rm{(p^{x})I+(xp^{x-1}q)X}

So,

\rm{(pI + qX)^{x}=(p^{x})I+(xp^{x-1}q)X}---(1)

But we know that,

(pI + qX)ˣ = AI + BX --------(2)

On comparing (1) and (2), we get

\longrightarrow\rm\green{A=p^{x}}

\longrightarrow\rm\green{B=xp^{x-1}q}

Hence, the correct option is option (b)

Similar questions