Math, asked by darbhaabhiram, 6 months ago

if x =
 \sqrt{10}  + 3
then find
x -  \frac{1}{x}

Answers

Answered by ItzShinyQueenn
1

x =  \sqrt{10}  + 3

 \frac{1}{x}  =  \frac{1}{ \sqrt{10} + 3 }

⇒ \frac{1}{x}  =  \frac{1( \sqrt{10}  - 3)}{ (\sqrt{10}  + 3)(  \sqrt{10}  - 3) }

⇒ \frac{1}{x}  =  \frac{ \sqrt{10} - 3 }{( \sqrt{10} )^{2}  -  {3}^{2} }

⇒ \frac{1}{x}  =  \frac{ \sqrt{10}  - 3}{10  - 9}

⇒ \frac{1}{x}  =  \frac{ \sqrt{10} - 3 }{1}

 \therefore  \frac{1}{x}  =  \sqrt{10}  - 3

 \bold{ x  -  \frac{1}{x} }

 =  \sqrt{10}  + 3  - ( \sqrt{10}  - 3)

  = \sqrt{10}  + 3 -  \sqrt{10 }  + 3

 = 6

 \sf \green{Hence, the  \: value  \: of   \:( x -  \frac{1}{x})   \: is  \: 6.}

Similar questions