Math, asked by Itzbrainlystar30, 4 months ago

If x =
 \sqrt{5} + 2
, then
(x + 1 \div x {}^{} ) {}^{2}
Answer it correctly ✌​

Answers

Answered by khashrul
3

Answer:

(x + 1 ÷ x)^2 = 20

Step-by-step explanation:

(x + 1 ÷ x)^2

= (x + \frac{1}{x} )^2

= x^2 + 2.x.\frac{1}{x} + \frac{1}{x^2}

= (\sqrt{5} + 2) ^2 + 2 + \frac{1}{(\sqrt{5} + 2)^2}

= 5 + 2.\sqrt{5}.2 + 4 + 2 + \frac{1}{5 + 2.\sqrt{5}.2 + 4}

= 11 + 4\sqrt{5} + \frac{1}{9 + 4\sqrt{5}}

= 11 + 4\sqrt{5} + \frac{9 - 4\sqrt{5}}{(9 + 4\sqrt{5})(9 - 4\sqrt{5})}

= 11 + 4\sqrt{5} + \frac{9 - 4\sqrt{5}}{(9^2 - 4^2.5)}  [using the identity a^2 - b^2 = (a + b)(a - b)]

= 11 + 4\sqrt{5} + \frac{9 - 4\sqrt{5}}{(81 - 80)}

= 11 + 4\sqrt{5} + 9 - 4\sqrt{5}

= 11 + 9

= 20

Answered by EliteSoul
9

Given :

x = √5 + 2

To find :

Value of (x + 1/x)²

Solution :

x = √5 + 2

∴ 1/x = 1/(√5 + 2)

⇒ 1/x = 1(√5 - 2)/{(√5 + 2)(√5 - 2)}     [Rationalising the denominator]

⇒ 1/x = (√5 - 2)/{ (√5)² - 2²}

⇒ 1/x = (√5 - 2)/(5 - 4)

⇒ 1/x = (√5 - 2)/1

1/x = √5 - 2

Now given expression :

⇒ (x + 1/x)² = [(√5 + 2) + (√5 - 2)]²

⇒ (x + 1/x)² = [√5 + 2 + √5 - 2]²

⇒ (x + 1/x)² = (2√5)²

⇒ (x + 1/x)² = 2² × (√5)²

⇒ (x + 1/x)² = 4 × 5

(x + 1/x)² = 20

∴ Required value of (x + 1/x)² = 20.


Anonymous: Amazing :)
EliteSoul: Thanks :)
Similar questions