Math, asked by sakshi29savdekar, 9 months ago

if x=
 \sqrt{5}  -  \sqrt{3}  \div  \sqrt{5}  +  \sqrt{3}
and y=
 \sqrt{5}  +  \sqrt{3}  \div  \sqrt{5}  -  \sqrt{3}
then find
x^2+y^2-6xy​

Attachments:

Answers

Answered by TakenName
1

Answer:

56

Step-by-step explanation:

Rationalize the denominator with identity.

The identity is a^2-b^2=(a+b)(a-b).

We need to find x.

Simply multiply \sqrt{5} -\sqrt{3} on denominator and numerator.

x=\frac{(\sqrt{5} -\sqrt{3} )^2}{(\sqrt{5} +\sqrt{3})(\sqrt{5} -\sqrt{3} ) } =\frac{5-2\sqrt{15} +3}{2} =4-\sqrt{15}

We need to find y.

Simply multiply \sqrt{5} +\sqrt{3} on denominator and numerator.

y=\frac{(\sqrt{5} +\sqrt{3} )^2}{(\sqrt{5} +\sqrt{3})(\sqrt{5} -\sqrt{3} ) } =\frac{5+2\sqrt{15} +3}{2} =4+\sqrt{15}

We know that (x+y)^2=x^2+2xy+y^2.

Simply subtract 8xy from both sides, and we get this.

  • (x+y)^2-8xy=x^2+y^2-6xy

We know that x+y=8 and xy=1.

Here is the answer : 8^2-8=56

Similar questions