Math, asked by rohanchaudhary9244, 1 month ago

if x=underoot3+1/underoot 3-1 and y=underroot3-1/underroot3+1 then the value of x2+y2 is

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

x =  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1}   \:  \: \&\\ y =  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}

Now,

 {x}^{2}  +  {y}^{2}  =  \bigg(  \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 } \bigg)^{2}   + \bigg( \frac{ \sqrt{3} - 1 }{ \sqrt{3}   + 1}  \bigg)^{2}  \\

  =    \frac{( \sqrt{3}  + 1)^{2} }{ (\sqrt{3} - 1)^{2} }    + \frac{( \sqrt{3} - 1)^{2}  }{ (\sqrt{3}   + 1)^{2} }    \\

  =    \frac{( \sqrt{3} )^{2}  + (1) ^{2} + 2 \sqrt{3}  }{ (\sqrt{3} )^{2}   + (1)^{2} - 2 \sqrt{3}   }    + \frac{(\sqrt{3} )^{2}   + (1)^{2} - 2 \sqrt{3}  }{ (\sqrt{3} )^{2}   + (1)^{2}  +  2 \sqrt{3} }    \\

  =    \frac{3 + 1 + 2 \sqrt{3}  }{ 3   + 1 - 2 \sqrt{3}   }    + \frac{3   + 1 - 2 \sqrt{3}  }{3  + 1  +  2 \sqrt{3} }    \\

  =    \frac{4+ 2 \sqrt{3}  }{ 4- 2 \sqrt{3}   }    + \frac{4- 2 \sqrt{3}  }{4 +  2 \sqrt{3} }    \\

  =    \frac{2+  \sqrt{3}  }{ 2-  \sqrt{3}   }    + \frac{2-  \sqrt{3}  }{2 +   \sqrt{3} }    \\

 =   \frac{(2 +  \sqrt{3}  )^{2}  + (2-  \sqrt{3} )^{2}  }{(2 +   \sqrt{3} )(2 -  \sqrt{3} )} \\

 =   \frac{2 \{(2)^{2} +  (\sqrt{3}) ^{2} \}   }{(2)^{2}   -    (\sqrt{3} )^{2} } \\

 =   \frac{2 \{4 +  3\}   }{4   -   3 } \\

 =   \frac{2  \times 7   }{1} \\

 = 14

Similar questions