Math, asked by PravinParmar414, 10 months ago

IF X=UNDERROOT OF 2+UNDERROOT3 THEN X+1UPON X=?

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x+\frac{1}{x}=2\sqrt{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies x =  \sqrt{2}   +  \sqrt{3} \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies x +  \frac{1}{x}  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \\  \\ \tt:  \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \times  \frac{ \sqrt{2} -  \sqrt{3}  }{ \sqrt{2} -  \sqrt{3}  }  \\  \\ \tt:  \implies  \frac{1}{x}  =  \frac{ \sqrt{2}  -  \sqrt{3} }{( \sqrt{2})^{2}  -  { (\sqrt{3} )}^{2} }  \\  \\ \tt:  \implies  \frac{1}{x}  =  \frac{ \sqrt{2}  -  \sqrt{3} }{2 - 3}  \\  \\ \tt:  \implies  \frac{1}{x}  =  -  \sqrt{2}  +  \sqrt{3}  -  -  -  -  - (1) \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies  x + \frac{1}{x}  =  \sqrt{2}  +  \sqrt{3} -  \sqrt{2}  +  \sqrt{3}  \\  \\  \green{\tt:  \implies  x + \frac{1}{x}  = 2 \sqrt{3} }

Answered by rohit301486
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x+\frac{1}{x}=2\sqrt{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given :}}

\tt: \implies x = \sqrt{2} + \sqrt{3}

 \red{\underline \bold{To \: Find :}}

\tt: \implies x + \frac{1}{x} =?

  • Given Question

\bold{As \: we \: know \: that}

 \tt: \implies \frac{1}{x} = \frac{1}{ \sqrt{2} + \sqrt{3} }

\tt: \implies \frac{1}{x} = \frac{1}{ \sqrt{2} + \sqrt{3} } \times \frac{ \sqrt{2} - \sqrt{3} }{ \sqrt{2} - \sqrt{3} }

\tt: \implies \frac{1}{x} = \frac{ \sqrt{2} - \sqrt{3} }{( \sqrt{2})^{2} - { (\sqrt{3} )}^{2} }

 \tt: \implies \frac{1}{x} = \frac{ \sqrt{2} - \sqrt{3} }{2 - 3}

\tt: \implies \frac{1}{x} = - \sqrt{2} + \sqrt{3} - - - - - (1)

 \bold{For \: finding \: value : }

\tt: \implies x + \frac{1}{x} = \sqrt{2} + \sqrt{3} - \sqrt{2} + \sqrt{3}

\green{\tt: \implies x + \frac{1}{x} = 2 \sqrt{3} }

Similar questions