Math, asked by ncchauhan40p9jw63, 10 months ago

If x = V2 +1, find the value of x² +1/ x^2​

Answers

Answered by tahseen619
7

6

Step-by-step explanation:

{\underline{{\text{Given}}}}

x =  \sqrt{2}  + 1

{\underline{{\text{To Find:}}}}

 {x}^{2}   +  \dfrac{1}{ {x}^{2} }

{\underline{{\text{Solution:}}}}

1st we should find the value of x^2 \: \text{and} \dfrac{1}{x^2}

So,

x =  \sqrt{2}  + 1 \\  \\  {x}^{2}  =  {( \sqrt{2}  + 1)}^{2}  \:  \:  \:  \:  [\text{Using...1}] \\  \\  =  {( \sqrt{2}) }^{2}  +  {(1)}^{2}  + 2. \sqrt{2} .1 \\  \\  = 2 + 1 + 2 \sqrt{2}  \\  \\  \therefore x {}^{2}  = 3 + 2 \sqrt{2}

Again,

 {x}^{2}  = 3 +   2\sqrt{2}  \\  \\  \frac{1}{x {}^{2} }  =  \frac{1}{3 +  2\sqrt{2}  }  \\  \\  =  \frac{(3 -  2\sqrt{2} )}{( 3 + 2\sqrt{2})( 3 - 2\sqrt{2} ) }  \\  \\ [\text{Rationalizing the denominator}] \\  \\  =  \frac{3 -  2\sqrt{2} }{ {   {(3)}^{2} - (2\sqrt{2} )}^{2} }  \:  \:  \:  [\text{Using....2 }] \\  \\  =  \frac{3 -  2\sqrt{2} }{9 - 8}  \\  \\  =  \frac{3 - 2 \sqrt{2} }{1}  \\  \\  \therefore \:  \frac{1}{ {x}^{2} }  = 3 - 2 \sqrt{2}

Now,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\  = 3 + 3 + 2 \sqrt{2}  - 2 \sqrt{2}  \\  \\  = 6

Hence, the required answer is 6.

{\underline{{\text{ Using Algebra Formula }}}}

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy.....(1)\\ \\(x+y)(x-y)=x^2-y^2......(2) \\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy\\ \\ {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Answered by Equestriadash
14

\bf Given:\ \tt x\ =\ \sqrt{2}\ +\ 1.\\\\\\\bf To\ find:\ \tt The\ value\ of\ x^2\ +\ \dfrac{1}{x^2}.\\\\\\\bf Answer:

\sf Since\ we\ know\ the\ value\ of\ x\ [\sqrt{2}\ +\ 1],\ let's\ find\ its\ square.\\\\\\\tt x^2\ \implies\ (\sqrt{2}\ +\ 1)^2\ =\ 2\ +\ 2\sqrt{2}\ +\ 1\ =\ \bf 3\ +\ 2\sqrt{2}.

\sf This\ means\ that\ \tt \dfrac{1}{x^2}\ \implies\ \dfrac{1}{3\ +\ \2\sqrt{2}}.\\\\\\\sf Rationalizing\ it,\\\\\\\implies\ \tt \dfrac{1}{3\ +\ 2\sqrt{2}}\\\\\\=\ \dfrac{1(3\ -\ 2\sqrt{2})}{(3\ +\ 2\sqrt{2})(3\ -\ 2\sqrt{2})}\\\\\\=\ \dfrac{3\ -\ 2\sqrt{2}}{(3)^2\ -\ (2\sqrt{2})^2}\\\\\\=\ \dfrac{3\ -\ 2\sqrt{2}}{9\ -\ 8}\\\\\\=\ \bf 3\ -\ 2\sqrt{2}

Now that we have both the values, let's substitute them and solve it.

\tt x^2\ +\ \dfrac{1}{x^2}\ \implies\ 3\ +\ 2\sqrt{2}\ +\ 3\ -\ 2\sqrt{2}\\\\\\\bf x^2\ +\ \dfrac{1}{x^2}\ =\ 6

Similar questions