Math, asked by aryan021212, 17 days ago

If x, | x + 1 |, |x - 1| are in AP, then find the common difference of an AP series.​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that,

\rm \: x, \:  |x + 1|, \:  |x - 1| \: are \: in \: AP

We know, 3 numbers a, b, c are in AP iff b - a = c - b

So, using this result, we get

\rm \:  |x + 1| - x =  |x - 1| -  |x + 1|

\rm\implies \:2 |x + 1|  =  |x - 1|  + x

Now, to solve this modulus equation, we have two critical points, i. e. - 1 and 1

So, three cases arises.

Case - 1

 \red{\rm \: When \: x \leqslant  - 1}

We know, from definition of Modulus function

Modulus function is defined as

\begin{gathered}\begin{gathered}\bf\:  |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, using this definition, we get

\rm \:  - 2(x + 1) = x - (x - 1)

\rm \:  - 2x - 2 = x - x + 1

\rm \:  - 2x - 2 = 1

\rm \:  - 2x = 1 + 2

\rm \:  - 2x =3

\rm\implies \:x =  - \dfrac{3}{2}

So, three numbers

\rm \: x, \:  |x + 1|, \:  |x - 1|

on substituting the value of x, can be reduced to

\rm \:  - \dfrac{3}{2}, \: \dfrac{1}{2}, \:  \dfrac{5}{2}

So,

\rm\implies \:Common \: difference = \dfrac{1}{2}  + \dfrac{3}{2} = \dfrac{4}{2} = 2

Case - 2

 \red{\rm \:  When \: - 1 < x < 1}

Now, in this case, equation reduces to

\rm \: 2(x + 1) = x - (x - 1)

\rm \: 2x + 2 = x - x + 1

\rm \: 2x + 2 = 1

\rm \: 2x = 1 - 2

\rm \: 2x = - 1

\rm\implies \:x =  - \dfrac{1}{2}

So, three numbers

\rm \: x, \:  |x + 1|, \:  |x - 1|

on substituting the value of x, can be reduced to

\rm \:  - \dfrac{1}{2}, \: \dfrac{1}{2}, \:  \dfrac{3}{2}

So,

\rm\implies \:Common \: difference = \dfrac{1}{2}  + \dfrac{1}{2} = \dfrac{2}{2} = 1

Hence,

Common difference of the series is 2 or 1

Answered by EmperorSoul
2

\large\underline{\sf{Solution-}}

Given that,

\rm \: x, \:  |x + 1|, \:  |x - 1| \: are \: in \: AP

We know, 3 numbers a, b, c are in AP iff b - a = c - b

So, using this result, we get

\rm \:  |x + 1| - x =  |x - 1| -  |x + 1|

\rm\implies \:2 |x + 1|  =  |x - 1|  + x

Now, to solve this modulus equation, we have two critical points, i. e. - 1 and 1

So, three cases arises.

Case - 1

 \red{\rm \: When \: x \leqslant  - 1}

We know, from definition of Modulus function

Modulus function is defined as

\begin{gathered}\begin{gathered}\bf\:  |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, using this definition, we get

\rm \:  - 2(x + 1) = x - (x - 1)

\rm \:  - 2x - 2 = x - x + 1

\rm \:  - 2x - 2 = 1

\rm \:  - 2x = 1 + 2

\rm \:  - 2x =3

\rm\implies \:x =  - \dfrac{3}{2}

So, three numbers

\rm \: x, \:  |x + 1|, \:  |x - 1|

on substituting the value of x, can be reduced to

\rm \:  - \dfrac{3}{2}, \: \dfrac{1}{2}, \:  \dfrac{5}{2}

So,

\rm\implies \:Common \: difference = \dfrac{1}{2}  + \dfrac{3}{2} = \dfrac{4}{2} = 2

Case - 2

 \red{\rm \:  When \: - 1 < x < 1}

Now, in this case, equation reduces to

\rm \: 2(x + 1) = x - (x - 1)

\rm \: 2x + 2 = x - x + 1

\rm \: 2x + 2 = 1

\rm \: 2x = 1 - 2

\rm \: 2x = - 1

\rm\implies \:x =  - \dfrac{1}{2}

So, three numbers

\rm \: x, \:  |x + 1|, \:  |x - 1|

on substituting the value of x, can be reduced to

\rm \:  - \dfrac{1}{2}, \: \dfrac{1}{2}, \:  \dfrac{3}{2}

So,

\rm\implies \:Common \: difference = \dfrac{1}{2}  + \dfrac{1}{2} = \dfrac{2}{2} = 1

Hence,

Common difference of the series is 2 or 1

Similar questions