Math, asked by lchsdprasad, 1 year ago

if√x+√x+√x+...=√x√x√x...then what is the value of x.

Answers

Answered by Anonymous
39

Answer :-

Value of x is 0 or 2.

Explanation :-

 \\ \\ \mathsf{ \sqrt{x +  \sqrt{x +  \sqrt{ x..... } } }  =  \sqrt{x \sqrt{x \sqrt{x...} } } } \\  \\  \\

 \mathsf{ let  \  \ \sqrt{x +  \sqrt{x +  \sqrt{ x..... } } }  =  \sqrt{x \sqrt{x \sqrt{x...} } }  = k} \\  \\  \\

i)

 \mathsf{ \sqrt{x +  \sqrt{x +  \sqrt{x...} } }  = k} \\  \\  \\

Squaring on both sides

 \mathsf{  \implies  \bigg(\sqrt{x +  \sqrt{x +  \sqrt{x...} } }  \bigg)^2  = (k)^2} \\  \\  \\

 \mathsf{  \implies  x +  \sqrt{x +  \sqrt{x...} }  = k^2} \\  \\  \\

 \mathsf{  \implies  x +k  = k^2 -  -  - eq(1)} \\  \\  \\

ii)

 \mathsf{ \sqrt{x\sqrt{x \sqrt{x...} } }  = k} \\  \\  \\

Squaring on both sides

 \mathsf{  \implies \bigg( \sqrt{x\sqrt{x \sqrt{x...} } }  \bigg)^2  = (k) ^2} \\  \\  \\

 \mathsf{  \implies x\sqrt{x \sqrt{x...} }   = k^2} \\  \\  \\

 \mathsf{  \implies x \bigg(\sqrt{x \sqrt{x...} } \bigg)   = k ^2} \\  \\  \\

 \mathsf{  \implies xk  = k ^2} \\  \\  \\

 \mathsf{  \implies x =  \dfrac{k^{2} }{k} } \\  \\  \\

 \mathsf{  \implies x =  k} \\  \\  \\

Substitute x = k in eq(1)

 \mathsf{  \implies  k +k  = k^2} \\  \\  \\

 \mathsf{  \implies  2k= k^2} \\  \\  \\

 \mathsf{  \implies  0= k^2 - 2k} \\  \\  \\

 \mathsf{  \implies  0= k(k - 2)} \\  \\  \\

 \mathsf{  \implies k(k - 2) = 0} \\  \\  \\

 \mathsf{  \implies k = 0 \ or  \ k - 2= 0} \\  \\  \\

 \mathsf{  \implies k = 0 \ or  \ k = 2} \\  \\  \\

 \mathsf{  \implies x= 0 \ or  \ x = 2} \\  \\  \\  \boxed{  \bf \because x = k} \\  \\  \\

the value of x is 0 or 2.

Similar questions