Math, asked by Aishwaryasunilkumar, 1 day ago

if x^x =y^y ,then dy/Dx is equal to​

Answers

Answered by chandan454380
0

Answer:

The answer is \frac{1+\log x}{1+\log y}

Step-by-step explanation:

Given x^x=y^y

Take log both sides

\log x^x=\log y^y\Rightarrow x\log x=y\log y

Now differentiate both sides w.r.t. x

\frac{d}{dx}(x\log x)=\frac{d}{dx}(y\log y)=\frac{d}{dy}(y\log y)\frac{dy}{dx}\\\Rightarrow \log x(1)+x(\frac{1}{x})=(\log y(1)+y(\frac{1}{y}))\frac{dy}{dx}\\\Rightarrow \log x+1=(\log y+1)\frac{dy}{dx}\\\Rightarrow \frac{dy}{dx}=\frac{1+\log x}{1+\log y}

Answered by 44PurpleOcean
0

Answer:

Solution

\begin{gathered}\frac{d}{dx}(x\log x)=\frac{d}{dx}(y\log y)=\frac{d}{dy}(y\log y)\frac{dy}{dx}\\\Rightarrow \log x(1)+x(\frac{1}{x})=(\log y(1)+y(\frac{1}{y}))\frac{dy}{dx}\\\Rightarrow \log x+1=(\log y+1)\frac{dy}{dx}\\\Rightarrow \frac{dy}{dx}=\frac{1+\log x}{1+\log y}\end{gathered}

Similar questions