Math, asked by angaitkar9, 1 year ago

If(x)= x² + 2, and g(x)=5x-8 then find (i)(f+g) (1) (ii) (f.g)​

Attachments:

Answers

Answered by mrdangerous
8

Step-by-step explanation:

This is tge required answer

Attachments:
Answered by jitumahi435
2

We need to recall the following rules of a function.

  • (f+g)(x)=f(x)+g(x)
  • (f\cdot g)(x)=f(x)\cdot g(x)

Given:

f(x)=x^2+2

g(x)=5x-8

i) (f+g)(1)

(f+g)(x)=x^{2} +2+5x-8

(f+g)(x)=x^{2} +5x-6

substitute x=1, we get

(f+g)(1)=1^{2} +5(1)-6

(f+g)(1)=6-6

(f+g)(1)=0

ii)  (f\cdot g)(1)

(f\cdot g)(x)=(x^{2} +2)(5x-8)

(f\cdot g)(x)=5x^{3} -8x^2+10x-16

substitute x=1, we get

(f\cdot g)(1)=5(1)^{3} -8(1)^2+10(1)-16

(f\cdot g)(1)=5 -8+10-16

(f\cdot g)(1)=-9

Similar questions