Math, asked by Roshanguptarg21671, 10 months ago

If x,y​∈[-1,0] and [ ] represents the greatest integer function then find the possible values of [cos-1x] + [cot-1y].

Answers

Answered by amitnrw
12

Given :    x,y​∈[-1,0] and [ ] represents the greatest integer function

Step-by-step explanation:

x,y​∈[-1,0] and [ ] represents the greatest integer function

=> possible Values of  x   & y   are   between  - 1    &   0

principal value of cos -¹ lies between [0 , π ]  ,  Cos Range =  [ - 1 , 1 ]  

Cos⁻¹   [ - 1 , 0 ]   lies  between [π/2 , π ]

Cos⁻¹(0)  =  π/2 = 1.57    [1.57]  = 1

Cos⁻¹(-1)  =  π = 3.14    [3.14] =     3

[Cos⁻¹(x)] = 1 , 2 , 3

principal value of cot -¹ lies between [0 , π ]

Cos⁻¹   [ - 1 , 0 ]   lies  between [π/2 , 3π/4 ]

Cot⁻¹(0)  =  π/2   = 1.57    [1.57]  =  1  

Cot⁻¹(-1)  =  3π /4 = 2.36  [2.36]  = 2

[Cot⁻¹(y)]  = 1 , 2

[Cos⁻¹(x)]  + [Cot⁻¹ (y)]

  1  + 1   = 2

  1  +  2  = 3

 2  + 1   = 3

 2 +  2  = 4

  3  + 1   =  4

  3  +  2  = 5

 

possible values of  [Cos⁻¹(x)]  + [Cot⁻¹ (y)]    =  2 , 3 , 4 , 5

Learn more:

What is the principal value of cos -¹[cos 2pi/3] + sin-¹[cos 2pi/3]?

https://brainly.in/question/17532985

Write the principal value of tan-¹(-1). - Brainly.in

https://brainly.in/question/17533155

If [x] ≥ –5.6, then exhaustive interval of x is (where [ ] denotes ...

https://brainly.in/question/17516221

Similar questions