If x+ y-1=0,prove that x^3+y^3+3xy=1
Answers
Answered by
3
x+y-1=0
x+y=1
x^3+3x^2*y+3x*y^2+y^3=1
x^3+3x*y(x+y)+y^3=1
x^3+3x*y(1)+y^3=1 [since x+y=1]
x^3+3x*y+y^3=1
hence proved
thank you
Answered by
1
Note:
★ (a + b)² = a² + 2ab + b²
★ (a - b)² = a² - 2ab + b²
★ a² - b² = (a + b)(a - b)
★ (a + b)³ = a³ + b³ + 3ab(a + b)
★ (a - b)³ = a³ - b³ - 3ab(a - b)
★ a³ + b³ = (a + b)(a² - ab + b²)
★ a³ - b³ = (a - b)(a² + ab + b²)
Solution:
Given : x + y - 1 = 0
To prove : x³ + y³ + 3xy = 1
Proof :
We have ;
=> x + y - 1 = 0
=> x + y = 1 -----------(1)
Now,
Cubing both sides of eq-(1) , we get ;
=> (x + y)³ = 1³
=> x³ + y³ + 3xy(x + y) = 1
=> x³ + y³ + 3xy•1 = 1 { using eq-(1) }
=> x³ + y³ + 3xy = 1
Hence proved .
Similar questions
English,
5 months ago
Chemistry,
5 months ago
Physics,
11 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago