Math, asked by disha1234555, 3 months ago

if x/y=(-1/3)^-3÷(2/3)^-4 find the value of (x/y+y/x)^-1​

Answers

Answered by khashrul
2

Answer:

(\frac{x}{y}  + \frac{y}{x} )^{-1} = -\frac{48}{265}

Step-by-step explanation:

Given that, \frac{x}{y} = (-\frac{1}{3} )^{-3} ÷ (\frac{2}{3} )^{-4}

=> \frac{x}{y} =  \frac{1}{(-\frac{1}{3} )^{3}} ÷ \frac{1}{(\frac{2}{3} )^{4}}  [∵ a^{-n} = \frac{1}{a^n}]

=> \frac{x}{y} =  (-27) . (\frac{2}{3} )^{4} = -\frac{2^4}{3} = - \frac{16}{3}  . . . . . . . . . . . .  (i)

Now (\frac{x}{y}  + \frac{y}{x} )^{-1}

= (-\frac{16}{3} - \frac{3}{16} )^{-1}

= (-\frac{16^2 + 3^2}{(3)(16)})^{-1}

= -\frac{48}{16^2 + 3^2}  [∵ a^{-n} = \frac{1}{a^n}]

= -\frac{48}{256 + 9}

= -\frac{48}{265}

Similar questions