Math, asked by bishalkumarjha12345, 7 months ago

If x-y=1 and x2+y2=41, find the value of x+y.​

Answers

Answered by utsav96
0
Pls mark as brainliest answer
Attachments:
Answered by InfiniteSoul
7

\sf{\underline{\boxed{\green{\large{\bold{ Given}}}}}}

  • \sf x - y = 1
  • \sf x^2 + y^2 = 41

\sf{\underline{\boxed{\green{\large{\bold{ To\: Find}}}}}}

  • x + y = ??

\sf{\underline{\boxed{\green{\large{\bold{ solution}}}}}}

\sf{\underline{\boxed{\pink{\large{\mathfrak{( x  - y ) ^2 = x^2 + y^2 - 2xy }}}}}}

\sf \implies 1^2 = 41 - 2xy

\sf\implies 2xy = 41 - 1

\sf\implies 2xy = 40

\sf\implies xy = \dfrac{40}{2}

\sf\implies xy = 20

\sf{\underline{\boxed{\pink{\large{\mathfrak{( x + y )^2 - ( x - y )^2 = 4xy }}}}}}

\sf\implies ( x + y )^2 - ( 1 )^2 = 4 \times 20

\sf\implies ( x + y )^2 - 1 = 80

\sf\implies ( x + y )^2 = 81

\sf\implies x + y = \sqrt{81}

\sf{\underline{\boxed{\green{\large{\mathfrak{ x + y = \sqrt{81}}}}}}}

Similar questions