If x + y = 1 and x3 + y3 = 19, then find the value of x2 + y2 .
Answers
Answered by
11
x + y = 1
Squaring on both sides,
x²+y²+2xy = 1
x²+y² = 1 - 2xy ....... (1)
x³+y³ = 19
(x+y)(x²+y²-xy) =19
x²+y²-xy =19 [Since x + y = 1]
x²+y² =19 + xy .................(2)
From the equations (1) and (2)
1 - 2xy = 19 + xy
3xy = -18
xy = -6
Now, substitute the value of xy in equation (2)
x²+y² =19 + (-6) = 13
Squaring on both sides,
x²+y²+2xy = 1
x²+y² = 1 - 2xy ....... (1)
x³+y³ = 19
(x+y)(x²+y²-xy) =19
x²+y²-xy =19 [Since x + y = 1]
x²+y² =19 + xy .................(2)
From the equations (1) and (2)
1 - 2xy = 19 + xy
3xy = -18
xy = -6
Now, substitute the value of xy in equation (2)
x²+y² =19 + (-6) = 13
Similar questions