if x - y = 1 ,X Y =28 find x cube minus y cube
Answers
Answered by
3
ANSWER
Given
x - y = 1
xy = 28
To find :
x^3-y^3 =?
Explanation
we have given
x - y = 1 , x y = 28
we know the algebraic formula,
(a^3 - b^3 )= ( a - b) (a^2 + ab + b^2)
therefor,
(x^3 - y^3) = ( x - y) (x ^2 + xy + y^2)
we have,
(x - y) = 1
(xy) = 28
(x^2 + y ^2) = ?
we know,
(a - b) ^2 = a^2 - 2ab + b^2
therefor,
(x - y)^2 = x^2 - 2xy + y^2
(x- y)^2 + 2xy = x^2 + y^2
therefor
x^2 + y ^2 = ( x - y) ^2 + 2xy
= (1)^2 + 2(28)
= 1 + 56
= 57
so,
(x^3 - y^3) = ( x - y) (x ^2 + xy + y^2)
= (1) (( x^2 + y^2) + ( xy) )
= (1) ((57)+( 28))
= (1) (85)
= [85]
finally,
Similar questions