if x+y =10 and xy=16 find the value of x^2-xy+y^2 and x^2+xy+y^2
Answers
Answered by
28
Using, (a + b)² = a² + b² + 2ab,
so,
(x + y)² = (10)²
=> x² + y² + 2xy = 100
=> x² + y² + 2(16) = 100
=> x² + y² + 32 = 100
=> x² + y² = 100 - 32
=> x² + y² = 68
Now simply, we know the value of x² + y² and xy we can find the value of x² + y² + xy and x² + y² - xy
So, x² - xy + y²
=> x² + y² - xy
=> 68 - 16 (since, x² + y² = 68)
=> x² - xy + y² = 52
Now, x² + xy + y²
= x² + y² + xy
= 68 + 16
=> x² + y² + xy = 84
Hope it helps dear friend ☺️✌️
so,
(x + y)² = (10)²
=> x² + y² + 2xy = 100
=> x² + y² + 2(16) = 100
=> x² + y² + 32 = 100
=> x² + y² = 100 - 32
=> x² + y² = 68
Now simply, we know the value of x² + y² and xy we can find the value of x² + y² + xy and x² + y² - xy
So, x² - xy + y²
=> x² + y² - xy
=> 68 - 16 (since, x² + y² = 68)
=> x² - xy + y² = 52
Now, x² + xy + y²
= x² + y² + xy
= 68 + 16
=> x² + y² + xy = 84
Hope it helps dear friend ☺️✌️
Answered by
7
hey there
Using, (a + b)² = a² + b² + 2ab,
(x + y)² = (10)²=>
x² + y² + 2xy = 100 =>
x² + y² + 2(16) = 100=>
x² + y² + 32 = 100
x² + y² = 100 - 32=> x² + y² = 68
( x - y)^2 = x² - xy + y² =
x² + y² - xy = 68 - 16
x² - xy + y² = 52.
x² + xy + y²= x² + y² + xy= 68 + 16 => x² + y² + xy = 84
hope it helps you
#bebrainly
Similar questions