Math, asked by morthriyasr9238, 10 months ago

If x + y = 10 and xy = 4, then what is the value of x4 + y4?

A) 8464 B) 8432 C) 7478 D) 6218

Answers

Answered by Anonymous
1

\huge{\sf{\blue{ANSWER}}}

GIVEN:-

  • x+y=10, xy=4

TO FIND:-

  • The value of  x^4+y^4.

HOW TO SOLVE,

  • We have to find the value of  x^2+y^2

So,

(x+y)^2=x^2+y^2+2xy

 (10)^2=x^2+y^2+8

 x^2+y^2=92

As we find the value of  x^2+y^2 we will square it and find the given value.

(x^2+y^2)^2=x^4+y^4+2×x^2×y^2

 x^4+y^4=8464-2(xy)^2

 x^4+y^4=8464-32

 x^4+y^4= 8432

Hence, "B" will be the correct answer.

Answered by Anonymous
17

Hi there!

\large\sf\underline{Your \:Answer \rightarrow\: B)8432.}

\large\sf\underline{Required \: explanation\rightarrow}

\bf\green{x + y = 10}

 \bf\red{{(x + y)}^{2}  =  {(10)}^{2}}

\bf\pink{ {x}^{2}  +  {y}^{2}  + 2xy =  {(10)}^{2} }

\bf\purple{{x}^{2}  +  {y}^{2}  = 92}

\bf\gray{({x}^{2} +{y}^{2} )}^{2}  = {(92)}^{2}

\bf\orange{8464 -  {(2xy)}^{2} }

\bf\purple{8464 - 32}

\bf\gray{8432}

Similar questions