Math, asked by sakshi6013, 11 months ago

If x+y=10,xy =2then find the value of (x-y)^2

Answers

Answered by SparklingBoy
0

Answer:

Given that,

x+y = 10

and

xy = 2.

Now we have to calculate value of

 {(x - y)}^{2}

We cannot calculate the value of above directly so we have to use the above given values as:-

 {(x - y)}^{2} can \: be \:  \\ written \:  as \\  {(x + y)}^{2}  - 4xy

Now putting above values

 {(x + y)}^{2}  - 4xy  \\ =  {10}^{2}  - 4(2) \\  = 100 - 8 \\  = 92

So, value of required expression will be

\bold{\green{\boxed{\boxed{ {(x - y)}^{2}  = 92}}}}

Answered by Daiwikisajoke
0

Answer:

92

Step-by-step explanation:

So, we know that,

= (x+y)^{2} = x^{2} +y^{2} + 2xy

= (10)^{2} = x^{2} +y^{2} + 2(2)

= 100 = x^{2} +y^{2} + 4

= 100 -4  = x^{2} +y^{2}

= 96  = x^{2} +y^{2}

Now, (x-y)^{2} = x^{2} +y^{2} - 2xy

                      = (x^{2} +y^{2}) - 2(2)

                      = (96) - 2(2)

                      = 96 - 4

                      = 92

Similar questions