Math, asked by vanshikajadon991, 1 year ago

If x+y =12 & xy =27 find the value of x^3+y^2

Answers

Answered by premmishra35
1

Hey friend,

Here is the solution :-

x + y = 12 \:  \:  \:  \:  \:  \:  \: xy = 27 \\  \\ from \:  \:  \: x + y = 12 \\ we \: get \: x = 12 - y \\ so \: xy = (12 - y)y = 27 \\ (12 - y)y = 27 \\ 12y -  {y}^{2}  = 27 \\   { - y}^{2}  + 12y = 27 \\  {y}^{2}  - 12y =  - 27 \\ \\  now \: by \: completing \: square \: method \\  \\  {y}^{2}  - 2 \times 6y +  {6}^{2}  =  - 27 +  {6}^{2}  \\  \\ (y - 6)^{2}  =  - 27 + 36 \\  \\  {(y - 6)}^{2}  = 9 \\  {(y - 6)}  =  \sqrt{9}  \\ (y - 6) =  +  - 3 \\  \\ y = 3 + 6 = 9 \\  \\ y =  - 3 + 6 = 3 \\  \\ when \: we \: take \: y = 9 \\ x + 9 = 12 \\ x  = 12 - 9 \\ x = 3 \\  \\ now \: we \: have \: x = 3 \: and \: y = 9 \\ so \: \:  \:   {x}^{3}   +  {y}^{2}  =  {3}^{3}  +  {9}^{2}  = 9 + 18 = 27

I hope this will help you....

Similar questions