If x+y=12 & xy=27 find x^3+y^3
Answers
Answered by
2
Step-by-step explanation:
let us remember (a+b)^3 formula
i.e a^3+b^3+3ab(a+b)
now from problem we have
x+y=12
xy=27
now replace values in
(x+y)^3=x^3+y^3+3xy(x+y)
(12)^3=x^3+y^3+3(27)(12)
1728=x^3+y^3+972
x^3+y^3=1728-972
=756
therefore x^3+y^3=756
Answered by
6
Answer:
→ x + y = 12
Cube on both sides
→ ( x + y )³ = 12³
Using ( a + b )³ = a³ + b³ + 3ab( a + b )
→ x³ + y³ + 3xy( x + y ) = 1728
Given xy = 27
→ x³ + y³ + 3(27)(12) = 1728
→ x³ + y³ + 972 = 1728
→ x³ + y³ = 1728 - 972
→ x³ + y³ = 756
Hence the required value is 756
Similar questions