if x+y=12 and xy = 27 find the value of x^3 + y^3 .
Radhikabhardwaj:
ok.. tell from where is 1728 come
Answers
Answered by
8
X + Y = 12
Cubing both sides.
X^3 + Y^3 + 3xy(x+y) = 1728
x + y = 12
XY = 27
X^3 + Y^3 + 3*12*27 = 1728
X^3 + Y^3 = 1728 - 3*12*27
=1728 - 972
=756
Cubing both sides.
X^3 + Y^3 + 3xy(x+y) = 1728
x + y = 12
XY = 27
X^3 + Y^3 + 3*12*27 = 1728
X^3 + Y^3 = 1728 - 3*12*27
=1728 - 972
=756
Answered by
1
EXPLANATION.
⇒ x + y = 12. - - - - - (1).
⇒ xy = 27. - - - - - (2).
As we know that,
Formula of :
⇒ (a + b)³ = a³ + 3a²b + 3ab² + b³.
Using this formula in this question, we get.
Cubing on both sides of the equation (1), we get.
⇒ (x + y)³ = (12)³.
⇒ x³ + 3x²y + 3xy² + y³ = 1728.
⇒ x³ + y³ + 3x²y + 3xy² = 1728.
⇒ x³ + y³ + 3xy(x + y) = 1728.
Put the value of equation (2) in this expression, we get.
⇒ x³ + y³ + 3(27)(12) = 1728.
⇒ x³ + y³ + 972 = 1728.
⇒ x³ + y³ = 1728 - 972.
⇒ x³ + y³ = 756.
∴ The value of x³ + y³ is 756.
Similar questions