Math, asked by rachel3525, 1 year ago

If x+y =12 and xy= 27, find the value of x3 + y3

Answers

Answered by NehaKari
47

Given :

x+y =12 and xy= 27

To Find :

The value of x^{3}  + y^{3}

Solution :

  (x + y)^{3}      = x^{3}  + y^{3}  + 3xy(x + y)

or, 12³          = x³ + y³ + 3×27×12 (given xy = 27 and x+y = 12)

or,  x³ + y³   =  1728 - 972

∴    x³ + y³   = 756

∴ The value of x³ + y³ is 756.

Answered by hukam0685
29

The value of \bf {x}^{3}  +  {y}^{3} is 756.

Given:

  • x + y = 12\\
  • xy = 27 \\

To find: Find the value of  {x}^{3}  +  {y}^{3}  \\

Solution:

Identify used:

 \boxed{\bf{(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) }\\

Step 1:

Take cube of x+y=12

( {x + y)}^{3}  = ( {12)}^{3}  \\

Apply identity

{x}^{3}  +  {y}^{3}  + 3xy(x + y) = 1728 \\

Step 2:

Put the values of x+y and xy

{x}^{3}  +  {y}^{3}  + 3(27)(12) = 1728 \\

or

{x}^{3}  +  {y}^{3}  +972 = 1728 \\

or

{x}^{3}  +  {y}^{3} = 1728 - 972 \\

or

{x}^{3}  +  {y}^{3}  = 756\\

Thus,

Value of  {x}^{3}  +  {y}^{3} is 756.

Learn more:

1) If x + y = 1, then the value of x3 + y3 + 3xy is

(1) 1 (2) 0

(3) 2 (4) 3

https://brainly.in/question/5384224

2) If x=2-√3 y=√3-√7 and z=√7-√4 find the value of x³+y³+z³...plz ans fast

https://brainly.in/question/4584573

Similar questions