if x+y=12 and xy=27,find value of x^3+y^3
Answers
Answered by
7
Given that, x+y=12 and xy=27
We know,
(x+y)3=x3+y3+3xy(x+y)
Therefore,
123=x3+y3+3×27×12
1728=x3+y3+972
x3+y3=1728−972=756
∴x3+y3=756
Answered by
1
EXPLANATION.
⇒ x + y = 12. - - - - - (1).
⇒ xy = 27. - - - - - (2).
As we know that,
Formula of :
⇒ (a + b)³ = a³ + 3a²b + 3ab² + b³.
Using this formula in this question, we get.
Cubing on both sides of the equation (1), we get.
⇒ (x + y)³ = (12)³.
⇒ x³ + 3x²y + 3xy² + y³ = 1728.
⇒ x³ + y³ + 3x²y + 3xy² = 1728.
⇒ x³ + y³ + 3xy(x + y) = 1728.
Put the value of equation (2) in this expression, we get.
⇒ x³ + y³ + 3(27)(12) = 1728.
⇒ x³ + y³ + 972 = 1728.
⇒ x³ + y³ = 1728 - 972.
⇒ x³ + y³ = 756.
∴ The value of x³ + y³ is 756.
Similar questions