If x+y=12 and xy=27,then find thevalue of x^3+y^3
Answers
Answered by
3
By using the identity,
a³ + b³ = (a + b)(a² + b² - ab)
Here, x = a and b = y
x + y = 12 given
xy = 27 given
x² + y² = ??
Using the identity,
a² + b² = (a + b)² - 2ab
we get
x² + y² = (x + y)² - 2xy
=> (12)² - 2(27)
=> x² + y² = 144 - 54
=> x² + y² = 90
Now substituting the value we get,
x³ + y³ = (x + y)(x² + y² - xy)
=> x³ + y³ = (12)(90 - 27)
=> x³ + y³ = (12)(63)
=> x³ + y³ = 756
Your answer
Hope it helps dear friend ☺️✌️
a³ + b³ = (a + b)(a² + b² - ab)
Here, x = a and b = y
x + y = 12 given
xy = 27 given
x² + y² = ??
Using the identity,
a² + b² = (a + b)² - 2ab
we get
x² + y² = (x + y)² - 2xy
=> (12)² - 2(27)
=> x² + y² = 144 - 54
=> x² + y² = 90
Now substituting the value we get,
x³ + y³ = (x + y)(x² + y² - xy)
=> x³ + y³ = (12)(90 - 27)
=> x³ + y³ = (12)(63)
=> x³ + y³ = 756
Your answer
Hope it helps dear friend ☺️✌️
Similar questions