Math, asked by jaiswalrajenrap, 7 hours ago

. If x + y = 12 and xy = 3, find the value of
(x2+ y2).​

Answers

Answered by shaurya276
0

Answer:

bruh

Step-by-step explanation:

Answered by Anonymous
1

Answer:

{\large{\sf{\underline{Given}}}}

\:  \:  \:  \:  \:  \:  \:  \: { \sf{❍ \:x + y = 12 }}

\:  \:  \:  \:  \:  \:  \:  \: { \sf{❍ \:xy = 3 }}

{\large{\sf{\underline{To \:  Find}}}}

\:  \:  \:  \:  \:  \:  \:  \: { \sf{❍ \: Find \: Value \: of \:  {x}^{2} +  {y}^{2}  ???}}

{\large{\sf{\underline{Solution}}}}

  • Let us do squaring on both sides for x + y = 12 .Thus we can get the answer. let's start solution

Doing SOBS:-

{\underline{ \sf{★ \: By\: Solving,}}}

{\dashrightarrow{\sf{ {(x + y)}^{2}  =  {12}^{2}  }}} \\  \\  \\ {\dashrightarrow{\sf{ {x}^{2}  +  {y}^{2}  + 2xy = 144}}} \\  \\  \\ {\sf{From \: Question  \: Value \: of \: xy \: =3}} \\  \\  \\ {\dashrightarrow{\sf{ {x}^{2}  +  {y}^{2} + 2(3) = 144 }}} \\  \\  \\ {\dashrightarrow{\sf{ {x}^{2}  +  {y}^{2} + 6 = 144 }}} \\  \\  \\ {\dashrightarrow{\sf{ {x}^{2} +  {y}^{2} = 144 - 6  }}} \\  \\  \\ {\dashrightarrow{\sf{ {x}^{2}  +  {y}^{2} = 138 }}} \\  \\  \\ \: { \boxed{ \boxed{ \therefore{ \sf{ \pink{Value \: of  \:  {x}^{2} +  {y}^{2} = 138 }}}}}}

Similar questions