Math, asked by shifask9465, 9 months ago

If x + y = 12 and xy = 32, then what is the value of x2 + y2 ?

A) 24 B) 144 C) 128 D) 80

Answers

Answered by Anonymous
55

Given :

  • x + y = 12
  • xy = 32

To find :

  • Value of x² + y² .

Solution :

  • x + y = 12
  • xy = 32

Now find the value of + y² .

\to\sf{x^2+y^2}

  • Use identity : + = (a+b)² - 2ab

\to\sf{(x+y)^2-2xy}

  • Put values : x+y = 12 and xy = 32

\to\sf{(12)^2-2\times\:32}

\to\sf{144-64}

\to\sf{80}

Therefore, the value of + is 80.

{\boxed{\bold{Option\:D)80\:is\: Correct\: Answer.}}}

__________________

Some identities :-

★ (a+b)² = a² + 2ab + b²

★ (a-b)² = a² -2ab + b²

★ a² + b² = (a+b)² - 2ab

★ a² + b² = (a-b)² + 2ab

★ a² - b² = (a+b) (a-b)

Similar questions