Math, asked by prasantabag066, 5 hours ago

If X+y=12 and xy=35 , find (x-y)²​

Answers

Answered by amansharma264
14

EXPLANATION.

⇒ x + y = 12. - - - - - (1).

⇒ xy = 35. - - - - - (2).

As we know that,

Formula of :

⇒ (x - y)² = (x + y)² - 4xy.

Put the values in the equation, we get.

⇒ (x - y)² = (12)² - 4(35).

⇒ (x - y)² = 144 - 140.

⇒ (x - y)² = 4.

Answered by TrustedAnswerer19
64

Method -1:

 { \boxed{\boxed{\begin{array}{cc} \bf \: given \\  \\ \rm \to \:x + y = 12 \\  \sf \: and \\  \rm \to \: xy = 35 \:  \:  \:  \:  \:  \:  \\  \\  \sf \: we \: have \: to \: find \:  \\  \\  \rm \to value \: of \: {(x - y)}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \bf \: we \: know \: that \\  \\  \rm( {x - y)}^{2} =  {(x + y)}^{2}  - 4xy \\  =  {(12)}^{2}  - 4 \times 35 \\  = 144 - 140 \\  = 4 \\  \\ \rm  \therefore {(x - y) }^{2}   = 4\end{array}}}}

Method -2:

   { \boxed{ \boxed{ \begin{array}{cc}\rm \: we \: know \: that \\  \\  \rm \: 4xy =  {(x + y)}^{2}  -  {(x - y)}^{2}  \\  \\  \rm =  > 4 \times 35 =  ({12)}^{2}   -  {(x - y)}^{2} \\  \\  =   >  \rm {(x - y)}^{2}  =  {(12)}^{2}  - 4 \times 35 \\  \\  = 144 - 140 \\  \\  = 4 \\  \\  \therefore \rm {(x - y)}^{2}   = 4\end{array}}}}

Similar questions