Math, asked by shameek3301, 1 year ago

if x+y=12 and xy=7find the value of xand y

Answers

Answered by TeenTitansGo
10

x + y = 12          ------ : [ 1 ]


xy = 7               ------ : [ 2 ]




In equation 1,


x + y = 12


x = 12 - y          ------- : [ 3 ]



In equation 2,


xy = 7


( 12 - y ) y = 7          [ ∴ x = 12 - y ]


12y - y^2 = 7


y^2 - 12y + 7 = 0



√Discriminant = √{ b^2 - 4ac }

     

                      = √{ ( - 12 )^2 - 4( 1 × 7 ) }


                      = √{ 144 - 28 }


                      = √116


                      = 2√29       ------- : [ 4 ]



By Quadratic equation,


x = \dfrac{ -b \pm \sqrt{discriminant}}{2a}


  = \dfrac{-( - 12 ) \pm 2\sqrt{29}}{2( 1 ) }       [ From 4 ]

  = \dfrac{12 + 2\sqrt{29}}{2}


  = \dfrac{2( 6 + \sqrt{29})}{2}


x  = 6 + √29



Then, putting the value of x in [ 1 ]


x + y = 12

6 + √29 + y = 12

y = 12 - 6 - √29

y = 6 - √29


Answered by Anonymous
14
Given, x + y = 12

x = 12 - y


Given, xy = 7

( 12 - y )y = 7

12y - y² = 7

0 = 7 + y² - 12y

0 = y² - 12y + 7



By Quadratic formula,


x =\dfrac{-b \pm \sqrt{b^{2}-4ac}}{2}


x =\dfrac{12\pm \sqrt{( - 12 )^{2}-4( 1 \times 7 )}}{2 \times 1}


x =\dfrac{12 \pm \sqrt{116}}{2}


x =\dfrac{ 2( 6 \pm \sqrt{29}}{2}


x = 6 + √29 or 6 - √29




Therefore, talking positive value

x + y = 12

6 + √29 + y = 12

y = 6 - √29





Hence,

x = 6 +  \sqrt{29}  \\  y = 6 -  \sqrt{29}

Anonymous: Fantastic
Anonymous: thanks
Similar questions