if x+y=12 and xy=7find the value of xand y
Answers
Answered by
10
x + y = 12 ------ : [ 1 ]
xy = 7 ------ : [ 2 ]
In equation 1,
x + y = 12
x = 12 - y ------- : [ 3 ]
In equation 2,
xy = 7
( 12 - y ) y = 7 [ ∴ x = 12 - y ]
12y - y^2 = 7
y^2 - 12y + 7 = 0
√Discriminant = √{ b^2 - 4ac }
= √{ ( - 12 )^2 - 4( 1 × 7 ) }
= √{ 144 - 28 }
= √116
= 2√29 ------- : [ 4 ]
By Quadratic equation,
x =
= [ From 4 ]
=
=
x = 6 + √29
Then, putting the value of x in [ 1 ]
x + y = 12
6 + √29 + y = 12
y = 12 - 6 - √29
y = 6 - √29
Answered by
14
Given, x + y = 12
x = 12 - y
Given, xy = 7
( 12 - y )y = 7
12y - y² = 7
0 = 7 + y² - 12y
0 = y² - 12y + 7
By Quadratic formula,
x =
x =
x =
x =
x = 6 + √29 or 6 - √29
Therefore, talking positive value
x + y = 12
6 + √29 + y = 12
y = 6 - √29
Hence,
x = 12 - y
Given, xy = 7
( 12 - y )y = 7
12y - y² = 7
0 = 7 + y² - 12y
0 = y² - 12y + 7
By Quadratic formula,
x =
x =
x =
x =
x = 6 + √29 or 6 - √29
Therefore, talking positive value
x + y = 12
6 + √29 + y = 12
y = 6 - √29
Hence,
Anonymous:
Fantastic
Similar questions