If x+y=14 and xy=9 , find the value of (x^2+y^2)
Answers
Answered by
7
Given That:
→ x + y = 14
→ xy = 9
We know that:
→ (a + b)² = a² + 2ab + b²
Therefore:
→ (x + y)² = x² + 2xy + y²
→ 14² = x² + 2xy + y²
→ x² + 2xy + y² = 196
Substituting the value of xy, we get:
→ x² + y² + 2 × 9 = 196
→ x² + y² + 18 = 196
→ x² + y² = 196 - 18
→ x² + y² = 178
★ Which is our required answer.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
Similar questions