Math, asked by pallapusailohith, 6 hours ago

if (x-y)^2=121xy show that 2 log(x+y)=3log5+logx+logy...Please answer this question.... Fast​

Answers

Answered by manjubhatti3657
2

Step-by-step explanation:

plz mark me as brainlest answer

Attachments:
Answered by anindyaadhikari13
9

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm \longrightarrow {(x - y)}^{2}  = 121xy

 \rm \longrightarrow  {x}^{2} +  {y}^{2} - 2xy  = 121xy

Adding 4xy to both sides, we get:

 \rm \longrightarrow  {x}^{2} +  {y}^{2} - 2xy  + 4xy = 121xy + 4xy

 \rm \longrightarrow  {x}^{2} +  {y}^{2}  + 2xy = 125xy

 \rm \longrightarrow  {(x + y)}^{2}= 125xy

Taking log on both sides, we get:

 \rm \longrightarrow  \log{(x + y)}^{2}=  \log(125xy)

 \rm \longrightarrow  2\log(x + y)=  \log(125) + \log(x) + \log(y)

 \rm \longrightarrow  2\log(x + y)=  \log( {5}^{3} ) + \log(x) + \log(y)

 \rm \longrightarrow  2\log(x + y)=  3\log( {5}^{} ) + \log(x) + \log(y)

Hence Proved..!!

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions