Math, asked by clakshminarasimhared, 7 days ago

If (x - y)^2 = 121xy, then 2 log (x + y) =
1) log x + log y + 3 log 2
3) log x + log y + 3 log 5
2) log x + log y + 2 log 2
4) log x + log y + 4 log 2​

Answers

Answered by mathdude500
43

\large\underline{\sf{Solution-}}

Given equation is

\rm \:  {(x - y)}^{2} = 121xy

can be rewritten as

\rm \:  {x}^{2} +  {y}^{2} - 2xy = 121xy

\rm \:  {x}^{2} +  {y}^{2} = 121xy + 2xy

\rm \:  {x}^{2} +  {y}^{2}  = 123xy

On adding 2xy on both sides, we get

\rm \:  {x}^{2} +  {y}^{2} + 2xy  = 123xy + 2xy

\rm \:  {(x + y)}^{2} = 125xy

\rm \:  {(x + y)}^{2} =  {5}^{3} xy

On taking log on both sides, we get

\rm \:  log{(x + y)}^{2} = log[ {5}^{3} xy]

We know that

\boxed{\tt{ log {x}^{y} = ylogx \: }} \\

and

\boxed{\tt{  \: logxy = logx + logy \: }} \\

So, using these results, we get

\rm \: 2log(x + y) = log {5}^{3} + logx + logy

can be rewritten as

\rm \: 2log(x + y) = 3log5 + logx + logy

Hence,

Option (3) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  log_{x}(x) = 1 \: }} \\

\boxed{\tt{  \:  log_{x}( {x}^{y} ) =y\: }} \\

\boxed{\tt{  \:  log_{ {x}^{z} }( {x}^{y} ) = \frac{y}{z} \: }} \\

\boxed{\tt{  \:  {a}^{ log_{a}(x) } \:  =  \: x \: }} \\

\boxed{\tt{  \:  {a}^{y log_{a}(x) } \:  =  \:  {x}^{y} \: }} \\

\boxed{\sf{  \:  \: ln( {e}^{x}) = x \: }} \\

Answered by Anonymous
46

Answer:

Question :-

\mapsto If (x - y)² = 121xy, then 2log(x + y) is ?

Options :

● 1) logx + logy + 3log2

● 2) logx + logy + 2log2

● 3) logx + logy + 3log5

● 4) logx + logy + 4log2

Given :-

\mapsto If (x - y)² = 121xy.

To Find :-

\mapsto What is the value of 2log(x + y).

Solution :-

\implies \bf (x - y)^2 =\: 121xy

As we know that :

\clubsuit \: \: \: \sf\bold{\pink{(x - y)^2 =\: x^2 - 2xy + y^2}}

By putting that above identities we get,

\implies \sf x^2 - 2xy + y^2 =\: 121xy

By adding 4xy to both sides we get,

\implies \sf x^2 + y^2 - 2xy + 4xy =\: 121xy + 4xy\\

\implies \sf x^2 + y^2 + 2xy =\: 125xy\\

\implies \sf x^2 + 2xy + y^2 =\: 125xy

As we know that :

\bigstar\: \: \: \sf\bold{\purple{(x + y)^2 =\: x^2 + 2xy + y^2}}

By putting that above identities we get,

\implies \sf (x + y)^2 =\: 125xy\\

By taking log on both sides we get,

\implies \sf log(x + y)^2 =\: log(125xy)\\

\implies \sf 2log(x + y) =\: log(125) + log(x) + log(y)\\

\implies \sf 2log(x + y) =\: log(5^3) + log(x) + log(y)\\

\implies \sf 2log(x + y) =\: 3log(5) + log(x) + log(y)\\

\implies \sf\bold{\red{2log(x + y) =\: log(x) + log(y) + 3log(5)}}\\

\therefore The value of 2log(x + y) is log(x) + log(y) + 3log(5) .

Hence, the correct options is option no (3) logx + logy + 3log5 .

Similar questions