Math, asked by Anonymous, 5 months ago

If (x − y)² = 152 and xy = 16, find the value of x² + y²

Answers

Answered by LoverLoser
5

Given :

  • (x - y)² = 152
  • xy = 16

To Find :

  • The value of  x² + y²

Solution :

Let,

(x - y)² = 152 ------------(1)

xy = 16 ------------(2)

Taking eq(1),

⇒ (x - y)² = 152

  • by using algebric equation [(a - b)² = a² + b² - 2ab]

⇒ x² + y² - 2xy  = 152

⇒ x² + y² = 152 + 2xy

  • From eq (2), [xy = 16]

⇒ x² + y² = 152 + 2 × xy

⇒ x² + y² = 152 + 2 × 16            

⇒ x² + y² = 152 + 32

x² + y² = 184

Answered by Flaunt
40

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Given :

(x − y)² = 152 and xy = 16

To Find :

find the value of x² + y²

______________________________________________

Identity used here :

 \bold{\boxed{\boxed{\pink{ {(x- y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}}}

The Question is also in the form of (x − y)²

so we expand it :

 =  >  {(x - y)}^{2}  = 152

 =  >  {x}^{2}  +  {y}^{2}  - 2xy = 152......(1)

 =  > xy = 16.....(2)

From equation 2 we get xy=16 now put into equation 1.

 =  >  {x}^{2}  +  {y}^{2}  - 2 \times 16 = 152

 =  >  {x}^{2}  +  {y}^{2}  - 32 = 152

 =  >  {x}^{2}  +  {y}^{2}  = 152 + 32 = 184

\bold{\boxed{\blue{∴ {x}^{2}  +  {y}^{2}  = 184}}}

Similar questions