*If x/y = 2/3 then 2x² + 3y² / 2x² - 3y² = ?*
1️⃣ 35/19
2️⃣ 19/35
3️⃣ -19/35
4️⃣ -35/19
Answers
Given : x/y = 2/3
To Find : 2x² + 3y² / 2x² - 3y²
1️⃣ 35/19
2️⃣ 19/35
3️⃣ -19/35
4️⃣ -35/19
Solution:
x/y = 2/3
Squaring both sides
=> ( x/y)² = (2/3)² = 4/9
2x² + 3y² / 2x² - 3y²
Dividing numerator and denominator by y²
= (2( x/y)² + 3) / (2( x/y)² - 3)
= (2 (4/9) + 3) / (2 (4/9) - 3)
multiplying numerator and denominator by 9
= ( 8 + 27) / ( 8 - 27)
= 35 / (-19)
= - 35/19
2x² + 3y² / 2x² - 3y² = -35/19
Learn More:
If 2x-3y/3z+y=zy/zx=x+3z/2y-3x then prove that every ratio = x/y
brainly.in/question/11760839
If 3x-5y/5z+3y=x+5z/y-5x=yz/xz then show that every ratio =x/y
brainly.in/question/11760672
If a,b,c,d are in continued proportion,prove that: a:d=triplicate ratio of ...
brainly.in/question/7514928
Given :- x/y = 2/3 .
To Find :- 2x² + 3y² / 2x² - 3y² = ?
1) 35/19
2) 19/35
3) -19/35
4) -35/19
Answer :- (4) (-35/19) .
Explanation :-
→ (x/y) = (2/3)
squaring both sides,
→ (x/y)² = (2/3)²
→ x²/y² = 4/9 -------- Eqn.(1)
now,
→ (2x² + 3y²) / (2x² - 3y²)
divide both numerator and denominator by y²,
→ {(2x² + 3y²) / y² } /{ (2x² - 3y²) / y²}
→ {(2x²/y²) + 3} / {(2x²/y²) - 3}
putting value from Eqn.(1),
→ {(2 * 4/9) + 3} / {(2 * 4/9) - 3}
→ (8/9 + 3) / (8/9 - 3)
→ {(8 + 27)/9} / {(8 - 27)/9}
→ (35/9) /( -19/9)
→ (35/9) * (-9/19)
→ (-35/19) (Option (4) (Ans.)
Shortcut :-
→ x/y = 2/3 .
- Assume x = 2 and y = 3,
putting value,
→ (2x² + 3y²) / (2x² - 3y²)
→ (2*2² + 3*3²) / (2*2² - 3*3²)
→ (2*4 + 3*9) / (2*4 - 3*9)
→ (8 + 27) / (8 - 27)
→ (35/(-19)
→ (-35/19) (Option (4) (Ans.)
Learn more :-
(7sqrt(3))/(sqrt(10+sqrt(3)))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(5)+3sqrt(2))
https://brainly.in/question/32043164
if the positive square root of (√190 +√ 80) i multiplied by (√2-1) and the
product is raised to the power of four the re...
https://brainly.in/question/26618255