Math, asked by OmHingmire, 4 months ago

If x/y = 2/3 then 2x2 + 3y2 / 2x2 - 3y2 = ?
1 35/19
2 19/35
3 -19/35
4 35/19

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\dfrac{x}{y}=\dfrac{2}{3}}

\textbf{To find:}

\textsf{The value of}

\mathsf{\dfrac{2x^2+3y^2}{2x^2-3y^2}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{2x^2+3y^2}{2x^2-3y^2}}

\textsf{This can be written as}

\mathsf{=\dfrac{y^2(2\left(\dfrac{x^2}{y^2}\right)+3)}{y^2(2\left(\dfrac{x^2}{y^2}\right)-3)}}

\mathsf{=\dfrac{2\left(\dfrac{x}{y}\right)^2+3}{2\left(\dfrac{x}{y}\right)^2-3}}

\mathsf{=\dfrac{2\left(\dfrac{2}{3}\right)^2+3}{2\left(\dfrac{2}{3}\right)^2-3}}

\mathsf{=\dfrac{2\left(\dfrac{4}{9}\right)+3}{2\left(\dfrac{4}{9}\right)-3}}

\mathsf{=\dfrac{\dfrac{8}{9}+3}{\dfrac{8}{9}-3}}

\mathsf{=\dfrac{\dfrac{8+27}{9}}{\dfrac{8-27}{9}}}

\mathsf{=\dfrac{\dfrac{35}{9}}{\dfrac{-19}{9}}}

\mathsf{=\dfrac{35}{-19}}

\implies\boxed{\mathsf{\dfrac{2x^2+3y^2}{2x^2-3y^2}=\dfrac{-35}{19}}}

Similar questions