Math, asked by angleranip6k6rd, 1 year ago

If x/y=2/3 then (x-y/y)^2 is equal to?

Answers

Answered by abhi569
9

Answer:

Required numeric value of { ( x - y ) / y }^2 is 1 / 9.

Step-by-step explanation:

Given,

\dfrac{x}{y}=\dfrac{2}{3}

Method 1

\implies \bigg(\dfrac{x-y}{y}\bigg)^2

Multiply the denominator and numerator by 1 / y :

\implies \bigg( \dfrac{\frac{x-y}{y}}{\frac{y}{y}}\bigg)^2\\\\\\\implies\bigg(\dfrac{\frac{x}{y}-\frac{y}{y}}{\frac{y}{y}}\bigg)^2\\\\\\\implies\bigg(\dfrac{\frac{x}{y}-1}{1}\bigg)^2

Substituting the value of x / y :

\implies \bigg(\dfrac{2}{3}-1\bigg)^2\\\\\\\implies\bigg(\dfrac{2-3}{3}\bigg)^2\\\\\\\implies \bigg(\dfrac{-1}{3}\bigg)^2\\\\\\\implies\dfrac{1}{9}

Method 2

\implies \bigg(\dfrac{x-y}{y}\bigg)^2\\\\\\ \implies \bigg( \dfrac{x}{y}-\dfrac{y}{y}\bigg)^2\\\\\\\implies\bigg(\dfrac{2}{3}-1\bigg)^2\\\\\\\implies\bigg(\dfrac{2-3}{3}\bigg)^2\\\\\\\implies\bigg(\dfrac{-1}{3}\bigg)^2\\\\\\\implies\dfrac{1}{9}

Hence the required numeric value of { ( x - y ) / y }^2 is 1 / 9.

Answered by Anonymous
9

\dfrac{x}{y} = \dfrac{2}{3}

___________ [GIVEN]

• We have to find the value of {( \dfrac{x \:  -  \: y}{y} )}^{2}

_____________________________

\implies {( \dfrac{x \:  -  \: y}{y} )}^{2}

\implies {( \dfrac{x }{y}  \:  -  \:  \dfrac{y}{y} )}^{2}

\implies {( \dfrac{x }{y}  \:  -  \:  1)}^{2}

\implies {( \dfrac{2 }{3}  \:  -  \:  1)}^{2}

\implies {( \dfrac{2 \:  -  \: 3}{3} )}^{2}

\implies {( \dfrac{-1}{3} )}^{2}

_____________________________

{( \dfrac{x \:  -  \: y}{y} )}^{2} = \dfrac{1}{9}

______________ \bold{[ANSWER]}

Similar questions