Math, asked by borgohai, 9 months ago

if x+y=25 and xcube + ycube = 4825 then what is the value of x and y

Answers

Answered by mysticd
0

 Given \: x + y = 25 \: ---(1)

 and \: x^{3} + y^{3} = 4825 \: --(2)

 \implies (x+y)^{3} - 3xy(x+y) = 4825

 \implies (x+y) [ (x+y)^{2} - 3xy] = 25 \times 193

 \implies 25\times [ 25^{2} - 3xy] = 25 \times 193 \: [From \: (1) ]

/* On Dividing bothsides by 25, we get */

 \implies  625 - 3xy =  193

 \implies   - 3xy =  193 - 625

 \implies   - 3xy =  - 432

/* On Dividing bothsides by (-3), we get */

 \implies   xy =  144 \: ---(3)

 Now, (x-y)^{2} = (x+y)^{2} - 4xy \\= 25^{2} - 4 \times 144 \: [ From \: (1) \:and \:(3) ] \\= 625 - 576 \\= 49

 \implies x - y = 7 \: --(4)

/* Adding equations (1) and (4) , we get */

 2x = 32

 \implies x = \frac{32}{2}

 \implies x = 16

/* Put x = 16 in equation (1) , we get */

 16 + y = 24

 \implies y = 24 - 16 = 8

Therefore.,

 \green { x = 16 \: and \: y = 8 }

•••♪

Similar questions