Math, asked by chandanakattakuri, 1 year ago

If x:y=(3÷5):(5÷7) and y:z=(3÷4):(2÷5) then x:y:z=?

Answers

Answered by saurav5076
2

your answer is in attachment.

Attachments:
Answered by sharonr
0

If x:y = (3 ÷ 5) : (5÷7) and y : z = (3 ÷ 4) : (2 ÷ 5) then x : y : z =( 21 ÷ 25) : 1 : (8 ÷ 15)

Solution:

Given, ratios are x : y = (3 ÷ 5) : (5 ÷ 7) and y : z = (3 ÷ 4) : (2 ÷ 5)  

Then we have to find x : y : z=?

\text { Now take } x: y=(3 \div 5):(5 \div 7) \rightarrow \frac{x}{y}=\frac{(3 \div 5)}{(5 \div 7)}

\begin{array}{l}{\frac{x}{y}=\frac{\frac{3}{5}}{\frac{5}{7}} \rightarrow \frac{x}{y}=\frac{3}{5} \times \frac{7}{5}} \\\\ {\frac{x}{y}=\frac{21}{25} \rightarrow \mathrm{x}=\frac{21 y}{25}}\end{array}

\text { Now take, } y: z=(3 \div 4):(2 \div 5) \rightarrow \frac{y}{z}=\frac{(3 \div 4)}{(2 \div 5)}

\begin{array}{l}{\frac{y}{z}=\frac{\frac{3}{4}}{\frac{2}{5}} \rightarrow \frac{y}{z}=\frac{3}{4} \times \frac{5}{2}} \\\\ {\frac{y}{z}=\frac{15}{8} \rightarrow z=y \times \frac{8}{15} \rightarrow z=\frac{8 y}{15}}\end{array}

By substituting the values in x : y : z, we get

\text { Now, } x: y: z=\frac{21 y}{25}: y: \frac{8 y}{15}=\frac{21}{25}: 1: \frac{8}{15}

Hence, x : y : z =  (21 ÷ 25) : 1 : (8 ÷ 15)

Similar questions