Math, asked by adi038, 2 months ago

If x:y = 3:8, then find the value of (5x + 7y):(8x + 11y).

Explain with Solution​

Answers

Answered by ritesh556413
1

Step-by-step explanation:

Given, x:y = 3:8

hence, x=3 and y=8

put these values in given expression we get,

(5.3+7.8):(8.3+11.8)

=(15+56):(24+88)

=71:112 ans

Answered by Anonymous
4

ANSWER :-

 \\

  • Required answer is 71/112.

 \\</strong><strong> </strong><strong>\</strong><strong>\</strong><strong>

GIVEN :-

 \\

  • x:y = 3:8

 \\  \\

TO FIND :-

 \\

  • (5x + 7y) : (8x + 11y)

 \\  \\

SOLUTION :-

 \\

As x and y in ratio of 3:8 , let x be 3k and y be 8k.

Now , we will substitute these values ...

 \\  \\  \sf \:  \dfrac{5x + 7y}{8x + 11y}  \\  \\ \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  \dfrac{5(3k) + 7(8k)}{8(3k) + 11(8k)}  \\  \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  \dfrac{15k + 56k}{24k + 88k}  \\  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \implies \sf \:  \dfrac{71 \cancel{k}}{112 \cancel{k} } \\  \\  \\  \implies \sf \:   \underline{\boxed{  \sf\dfrac{5x + 7y}{8x + 11y}  =  \dfrac{71}{112} }} \\ \\

VERIFICATION :-

 \\  \sf \:  \dfrac{5x + 7y}{8x + 11y} =  \dfrac{71}{112}   \\  \\  \\  \implies \sf \: 112(5x + 7y) = 71(8x + 11y) \\  \\  \implies \sf \: 560x + 784y = 568x + 781y \\  \\  \implies \sf \: 560x - 568x = 781y - 784y \\  \\  \implies \sf \:   \cancel-  \: 8x =   \cancel- \:  3y \\  \\  \implies \sf \: 8x = 3y \\  \\  \implies \sf \:   \boxed{ \sf\dfrac{x}{y}  =  \dfrac{3}{8} } \:  \:  \:  \:  \: (verified)

Similar questions