Math, asked by ammy123, 4 months ago

If x-y =3 and x^2+y^2 = 10 , find xy is
(With steps)

Answers

Answered by draghavbharathi
1

꧁༺Here is your answer dude༻꧂

Attachments:
Answered by Arceus02
2

Given:-

  • x - y = 3
  •  {x}^{2}  +  {y}^{2}  = 10

\\

To find:-

  • The value of xy.

\\

Answer:-

Given that,

x - y = 3

Squaring both sides,

  \longrightarrow  {(x - y)}^{2}  =  {3}^{2}

Expanding L.H.S. using (a - b)² = a² + b² - 2ab with a = x and b = y,

  \longrightarrow   {x}^{2}  +  {y}^{2}  - 2xy  =  9

  \longrightarrow   ({x}^{2}  +  {y}^{2})  - 2xy  =  9

Putting the value fo x^2+y^2=10 as given in the question,

  \longrightarrow   10  - 2xy  =  9

  \longrightarrow  2xy  =  10 - 9

  \longrightarrow  2xy  =  1

  \longrightarrow   \underline{ \underline{xy  =   \dfrac{1}{2} }}

\\

Extra Knowledge:-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ + b³ = (a + b)(a² + b² - ab)
  • a³ - b³ = (a - b)(a² + b² + ab)
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Similar questions